
AWhisper ROS Wrapper to Enable Automatic Speech
Recognition in Embedded Systems

Andrés A. Ramírez-Duque
School of Computing Science

University of Glasgow
Glasgow, UK

Andres.Ramirez-Duque@glasgow.ac.uk

Mary Ellen Foster
School of Computing Science

University of Glasgow
Glasgow, UK

MaryEllen.Foster@glasgow.ac.uk

ABSTRACT
Automatic Speech Recognition (ASR) is a technology that aims to
automatically identify human speech and transcribe it into text.
The performance of modern ASR systems is rapidly increasing, but
most current systems require significant computing resources to
run and often make use of cloud computing, making them difficult
to deploy in the embedded context that is often necessary for an
interactive robot. OpenAI has recently released Whisper, a robust
and open-source speech recognition system; in this paper, we show
how a lightweight Whisper model can be integrated into the ROS
ecosystem using high-performance inference functions, enabling
automatic speech recognition to run offline on embedded hardware,
giving the potential for ASR to be integrated into a much wider set
of HRI contexts.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics.

KEYWORDS
Speech Recognition, ROS, High-performance computing, Embedded
hardware

ACM Reference Format:
Andrés A. Ramírez-Duque and Mary Ellen Foster. 2023. A Whisper ROS
Wrapper to Enable Automatic Speech Recognition in Embedded Systems. In
Proceedings of HRI 2023Workshop on Human-Robot Conversational Interaction
(HRCI 2023). ACM, New York, NY, USA, 3 pages.

1 INTRODUCTION
The recent rapid development of conversational AI systems, partic-
ularly those making use of a massive training approach [8], has the
potential to contribute significantly to social robotics, by providing
the opportunity for such robots to support fluent, open-domain
conversation. Recent, rapid developments in natural language pro-
cessing and speech processing that could be applied in HRI in-
clude GPT-3 [6] and ChatGPT1 by OpenAI, along with Vall-E [18],
Wav2Vec [3] and Whisper [16]. It could be said that a point is ap-
proaching where a distinction could be drawn between “before”
and “after” research on conversational robotics.

However, although the potential for such systems is growing, it
is still necessary to put these off-the-shelf models into practice and

1ChatGPT: https://openai.com/blog/chatgpt/

HRCI 2023, 13 March 2023, Stockholm, Sweden
.

fine-tune a series of low-level details to develop physically embod-
ied agents with conversational skills close to those of humans. In
principle, conversational robots could be developed using similar
techniques to those used in embodied virtual agent implementa-
tion [2]. However, the physical embodiment of robots presents a
particular challenge: specifically, the embedded hardware often
used in robots has some limitations on computing capabilities that
make their development difficult. These limitations, such as the
computational cost, the motherboard processor, the range of the
sensors, and the limitations of Internet access in crowded spaces,
must be taken into account when designing conversational robots.

Modern ASR systems tend to require significant processing
power, either on the local computer (often using a GPU) or using
cloud-based resources. However, the robots that could most benefit
from the addition of ASR are often equipped with low processing
capacities without access to a GPU and cannot easily be updated;
these robots may also be deployed in contexts where internet access
is unreliable or nonexistent. Deploying a large machine-learning
model such as Whisper requires a hardware-focused approach.

We present such a solution: we have integrated Whisper [16]
with the Robot Operating System (ROS) [15] using a high-performance
inference package to enable offline Automatic Speech Recogni-
tion (ASR) using embedded hardware. The package has been im-
plemented and tested on a Raspberry Pi and is able to provide
near-real-time speech recognition on this embedded platform. The
implemented software can be freely downloaded from Github.

2 AUTOMATIC SPEECH RECOGNITION
Automatic Speech Recognition (ASR) is a technology that aims to
automatically identify human speech and transcribe it into text
[1]. Traditional methods focused on manual feature extraction and
conventional techniques such as Gaussian Mixture Models (GMM)
[19], and Hidden Markov Models (HMM) [11]. Modern techniques
use Deep Neural Networks (DNNs) [10] and Transformers [17].
The textual transcription of the spoken utterance may provide a
more natural human-robot interaction, but it also increases the
complexity of the robot deployment.

2.1 Whisper by OpenAI
Whisper is a robust speech recognition system developed by Ope-
nAI using over 680,000 hours of supervised data collected from the
web and trained through weak supervision techniques. Addition-
ally, thanks to the massive database and the training techniques
that they used, the model can be a multilingual and multitask ASR
system [16]. The structure of the model itself is not new, as it uses

https://openai.com/blog/chatgpt/


HRCI 2023, 13 March 2023, Stockholm, Sweden Andrés A. Ramírez-Duque and Mary Ellen Foster

an encoder-decoder transformer model [17]. The model was en-
hanced to add the multitask training format using a set of special
tokens that serve as task specifiers or classification targets; as part
of development, a sample of the previously transcribed text was
fed back into the model so that it would learn from the context that
accompanies the transcription.

OpenAI released this ASR system as open source and made the
trained models available through a family of five models ranging
from Tiny to Large, consisting of 39M to 1550M parameters respec-
tively [16]. The official Whisper implementation2 requires Python
3.9.9 and PyTorch 1.10.1 [14]. Despite the relatively small size of
the Tiny model, the performance of this model on embedded plat-
forms such as the Raspberry Pi is poor: it is not possible to perform
transcriptions anywhere close to real-time.

2.2 High-performance Inference
Whisper.cpp [9] is an open-source framework that uses high-performance
coding to implement one of the currently best-known alternative
methods for performing Whisper model inference. This implemen-
tation uses plain C/C++ structure code optimized to run the encoder-
decoder model only using CPU resources. The approach features
low memory usage, requires no allocated memory at run time, and
integrates Arm NEON, AVX, and VSX intrinsic support depending
on the processor architecture. It also integrates different Basic Lin-
ear Algebra Subprograms (BLAS) libraries for accelerated tensor
operation routines.

To date, this minimalist implementation has incorporated some
OpenAI model features, such as initial prompts, temperature sup-
port, Greedy decoding strategy, and BeamSearch [12]. The Whis-
per.cpp GitHub repository3 provides a number of example applica-
tions, including a web browser, a system to generate karaoke-style
transcriptions, a real-time transcription of the raw capture, and a
basic voice assistant example.

3 WHISPER ROS WRAPPER
From a purely technical perspective, integrating an ASR system
into ROS seems straightforward, as ROS is an inherently flexible
ecosystem that supports multiple languages. However, depending
on the target platform, the model requirements, and the final task of
social interaction, porting an ASR may require a bit more effort and
time. We have integrated Whisper.cpp into ROS using embedded
platforms widely used by the developer community, such as the
Raspberry Pi. These embedded systems are characterised by being
portable and having a good processing vs power usage ratio and an
adequate size that allows them to be discreet and easily integrated
into commercial robotic platforms.

3.1 ROS Service Integration
The first thing we set out to answer is what might be the best way
to integrate a system like Whisper into ROS. The answer to the
above question depends on the typical requirements of a robotic
system and the interaction task. Normally, a conversational robot
must simultaneously execute the reading of sensors (touch, cameras,

2OpenAI Whisper website: https://openai.com/blog/whisper/
3Whisper.cpp: https://github.com/ggerganov/whisper.cpp

LiDAR, microphones), the control of actuators, and various decision-
making processes and communication interface or direct control
with the user. In this context, the clear approach for integrating
an ASR system into ROS would be a process that runs on-demand,
that is, a service or action.

The implementation of ROS Service and Actions is simple: they
act as a callback blocking function that is executed when a signal
is triggered, but in ROS, this kind of process is enriched by the
synchronous RPC-style communication that enables bidirectional
connection with any ROS entity [15]. Services are used to run
fast processes, so they are ideal for a robot that might need to
switch tasks quickly. Thus, in this work we implement the inference
process as a ROS service, making it accessible to all nodes and using
a microphone to record audio samples.

Our implemented service stores speech samples in an audio
buffer which can be filled via the ROS Topic /audio using a standard
AudioDataStamped message. The service also accepts audio samples
coming directly from GStreamer audio pipelines without further
ROS message conversion. In order to maintain compatibility with
Whisper.cpp, it can also use SDL24 to provide low-level access to the
audio. In all the above cases, the audio must be sampled at 16000 Hz.
Once the transcription of the audio segment is finished, the service
responds to the requested signal using the std_srvs/Trigger message
to notify either True/False if the service is executed successfully
and a String message containing the transcribed audio.

The ROS service provides three modes of operation: in the first
one, it runs as a streaming method for a period of 𝑇 seconds and
transcribes any available audio samples in the input. In the second
mode, the service listens passively until it recognises a passphrase
to trigger detection and transcribe a predetermined (𝑁 ) number
of words (N output tokens). In the final mode, the service is used
to transcribe and match keywords contained in a vocabulary and
respond with a command associated with each keyword.

Additionally, we include a function in the service that allows us
to reset and relaunch the inference process to modify some sensi-
tive parameters, such as the number of tokens used by the encoder
to represent the audio context. It is important to note that in em-
bedded platforms such as the Raspberry Pi, controlling the context
sizes changes the encoder-decoder sizes and therefore the inference
time. This could allow us to balance features such as precision and
computational cost at run-time, which may be advantageous de-
pending on the phase of the human-robot interaction that requires
ASR inference: for example, if the system is expecting an answer to
a Yes/No question, then the system could be reconfigured with a
smaller vocabulary.

For this work, the service was implemented on a Raspberry Pi 4
8GB (ARM Cortex A72). The ROS package was built by compiling
the Whisper.cpp module using Neon-Arm5 routines and OpenBlas6
to optimise performance. To initially test the performance of the
inference process, an 11-second audio sample was transcribed using
the default amount of context tokens (1500 tokens), and load time,
encoder time, and total inference time were measured. The ROS
Service takes about 2000𝑚𝑠 to load the model, 7600𝑚𝑠 to code the

4Simple Direct Media Layer: https://www.libsdl.org/
5Neon-Arm: https://www.arm.com/technologies/neon
6OpenBLAS: https://github.com/xianyi/OpenBLAS

https://openai.com/blog/whisper/
https://github.com/ggerganov/whisper.cpp
https://www.libsdl.org/
https://www.arm.com/technologies/neon
https://github.com/xianyi/OpenBLAS


A Whisper ROS Wrapper to Enable Automatic Speech Recognition in Embedded Systems HRCI 2023, 13 March 2023, Stockholm, Sweden

sample, and around ten seconds to finish the whole inference pro-
cess on Raspberry. Once the number of tokens was reduced to 768
and 512 tokens, the encoder ran two and three times faster, respec-
tively. Thus, it is possible to use the ROS service implementation
to transcribe three to seven seconds audio samples with near real-
time behaviour. The developed package can be found on GitHub at
https://github.com/andres-ramirez-duque/ros_stream.

3.2 Challenges
The result of this simplified implementation is promising, but the
main purpose is to help as a proof of concept to analyse the chal-
lenges that remain to provide robots with robust ASR systems like
Whisper that are able to run on embedded hardware to support the
development of conversational robots. A remaining challenge for
this overall goal is to address the timing control and turn-taking
among the speakers, including the robot: the current service allows
us to take care of the resources, but it requires an additional strategy
that executes the service and triggers it at the correct time.

In addition, the current model does not yet implement other typ-
ical ASR functions, such as word-level timestamps, speech activity
detection [5], speaker change detection, voice overlay detection, and
diarization [4]. In the current state, it is not possible to identify and
transcribe what each person is saying separately. The above limits
implementation in complex scenarios such as crowded spaces.

4 CONCLUSION
We have presented the development of a Whisper ROS wrapper
composed of a lightweight Whisper model and high-performance
inference functions to enable automatic speech recognition on
embedded hardware, with the goal of supporting conversational
robot systems. We have described the characteristics of the inputs,
methods, and outputs of the ROS service and have demonstrated
that it is capable of real-time recognition; we have also outlined
some remaining challenges. We consider that this implementation
could be used as a proof of concept for future research, and are
currently exploring integrating this server into a child-robot system
designed for use in paediatric emergency departments [7, 13].

ACKNOWLEDGMENTS
The authors wish to acknowledge the SSHRC-UKRI Canada-UK Ar-
tificial Intelligence Initiative (UKRI grant ES/T01296/1) for financial
support of this project.

REFERENCES
[1] Hanan Aldarmaki, Asad Ullah, Sreepratha Ram, and Nazar Zaki. 2022. Unsuper-

vised Automatic Speech Recognition: A review. Speech Communication 139 (4
2022), 76–91. https://doi.org/10.1016/j.specom.2022.02.005

[2] Merav Allouch, Amos Azaria, and Rina Azoulay. 2021. Conversational Agents:
Goals, Technologies, Vision and Challenges. Sensors 21 (12 2021), 8448. Issue 24.
https://doi.org/10.3390/s21248448

[3] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. 2020.
wav2vec 2.0: A framework for self-supervised learning of speech representations.
Advances in Neural Information Processing Systems 33 (2020), 12449–12460.

[4] Hervé Bredin and Antoine Laurent. 2021. End-to-end speaker segmentation for
overlap-aware resegmentation. In Proc. Interspeech 2021.

[5] Hervé Bredin, Ruiqing Yin, Juan Manuel Coria, Gregory Gelly, Pavel Korshunov,
Marvin Lavechin, Diego Fustes, Hadrien Titeux, Wassim Bouaziz, and Marie-
Philippe Gill. 2020. pyannote.audio: neural building blocks for speaker diarization.
In ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal
Processing.

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
https://doi.org/10.48550/ARXIV.2005.14165

[7] Mary Ellen Foster, Patricia Candelaria, Lauren J. Dwyer, Summer Hudson, Alan
Lindsay, Fareha Nishat, Mykelle Pacquing, Ronald P. A. Petrick, Andrés A.
Ramírez-Duque, Jennifer Stinson, Frauke Zeller, and Samina Ali. 2023. Co-design
of a Social Robot for Distraction in the Paediatric Emergency Department. In
Companion of the 2023 ACM/IEEE International Conference on Human-Robot Inter-
action. Stockholm, Sweden. https://doi.org/10.1145/3568294.3580127

[8] Asbjørn Følstad, Theo Araujo, Effie Lai-Chong Law, Petter Bae Brandtzaeg,
Symeon Papadopoulos, Lea Reis, Marcos Baez, Guy Laban, Patrick McAllister,
Carolin Ischen, Rebecca Wald, Fabio Catania, Raphael Meyer von Wolff, Sebas-
tian Hobert, and Ewa Luger. 2021. Future directions for chatbot research: an
interdisciplinary research agenda. Computing 103 (12 2021), 2915–2942. Issue 12.
https://doi.org/10.1007/s00607-021-01016-7

[9] Georgi Gerganov. 2023. Whisper.cpp. https://github.com/ggerganov/whisper.
cpp.

[10] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath,
and Brian Kingsbury. 2012. Deep Neural Networks for Acoustic Modeling in
Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal
Processing Magazine 29 (11 2012), 82–97. Issue 6. https://doi.org/10.1109/MSP.
2012.2205597

[11] B. H. Juang and L. R. Rabiner. 1991. Hidden Markov Models for Speech Recogni-
tion. Technometrics 33 (8 1991), 251. Issue 3. https://doi.org/10.2307/1268779

[12] Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Dragomir Radev, Yejin Choi,
and Noah A. Smith. 2022. Beam Decoding with Controlled Patience. https:
//doi.org/10.48550/ARXIV.2204.05424

[13] Alan Lindsay, Andrés A. Ramírez-Duque, Ronald P. A. Petrick, and Mary Ellen
Foster. 2022. A Socially Assistive Robot using Automated Planning in a Paedi-
atric Clinical Setting. In Proceedings of the AAAI Fall Symposium on Artificial
Intelligence for Human-Robot Interaction (AI-HRI). https://doi.org/10.48550/arXiv.
2210.09753

[14] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, et al. 2019. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.
neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[15] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating
System. In ICRA Workshop on Open Source Software.

[16] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and
Ilya Sutskever. 2022. Robust speech recognition via large-scale weak supervision.
arXiv preprint arXiv:2212.04356 (2022).

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[18] Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu,
Zhuo Chen, Yanqing Liu, Huaming Wang, Jinyu Li, Lei He, Sheng Zhao, and
Furu Wei. 2023. Neural Codec Language Models are Zero-Shot Text to Speech
Synthesizers. https://doi.org/10.48550/ARXIV.2301.02111

[19] Y. Zhang, M. Alder, and R. Togneri. 1994. Using Gaussian mixture modeling in
speech recognition. Proceedings of ICASSP ’94. IEEE International Conference on
Acoustics, Speech and Signal Processing i, I/613–I/616. https://doi.org/10.1109/
ICASSP.1994.389219

https://github.com/andres-ramirez-duque/ros_stream
https://doi.org/10.1016/j.specom.2022.02.005
https://doi.org/10.3390/s21248448
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.1145/3568294.3580127
https://doi.org/10.1007/s00607-021-01016-7
https://github.com/ggerganov/whisper.cpp
https://github.com/ggerganov/whisper.cpp
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.2307/1268779
https://doi.org/10.48550/ARXIV.2204.05424
https://doi.org/10.48550/ARXIV.2204.05424
https://doi.org/10.48550/arXiv.2210.09753
https://doi.org/10.48550/arXiv.2210.09753
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.48550/ARXIV.2301.02111
https://doi.org/10.1109/ICASSP.1994.389219
https://doi.org/10.1109/ICASSP.1994.389219

	Abstract
	1 Introduction
	2 Automatic speech recognition
	2.1 Whisper by OpenAI
	2.2 High-performance Inference

	3 Whisper ROS Wrapper
	3.1 ROS Service Integration
	3.2 Challenges

	4 Conclusion
	Acknowledgments
	References

